Progress in Tuberculosis Vaccine Development and Hostdirected Therapiesã¢ââ€a State of the Art Review
1. Paulson T. Epidemiology: a mortal foe. Nature. 2013; 502:S2–S3.
2. Earth Health Organization. Global Tuberculosis Study 2016. Geneva: World Health Organization;2016.
3. Havlir DV, Getahun H, Sanne I, Nunn P. Opportunities and challenges for HIV intendance in overlapping HIV and TB epidemics. JAMA. 2008; 300:423–430.
4. Lönnroth Grand, Castro KG, Chakaya JM, Chauhan LS, Floyd K, Glaziou P, Raviglione MC. Tuberculosis control and elimination 2010–fifty: cure, care, and social development. Lancet. 2010; 375:1814–1829.
5. Rehm J, Samokhvalov AV, Neuman MG, Room R, Parry C, Lonnroth K, Patra J, Poznyak V, Popova S. The association between alcohol apply, alcohol utilise disorders and tuberculosis (TB). A systematic review. BMC Public Health. 2009; nine:450.
vi. Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of illness and the role of reinfection. Epidemiol Infect. 1997; 119:183–201.
seven. Mazurek GH, LoBue PA, Daley CL, Bernardo J, Lardizabal AA, Bishai WR, Iademarco MF, Rothel JS. Comparison of a whole-claret interferon gamma analysis with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. JAMA. 2001; 286:1740–1747.
8. Kolloli A, Subbian S. Host-directed therapeutic strategies for tuberculosis. Front Med (Lausanne). 2017; four:171.
ix. Pontali E, Sotgiu Thousand, D'Ambrosio Fifty, Centis R, Migliori GB. Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical assay of the evidence. Eur Respir J. 2016; 47:394–402.
10. Agyeman AA, Ofori-Asenso R. Efficacy and condom profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-assay. Ann Clin Microbiol Antimicrob. 2016; 15:41.
11. Bruns H, Stegelmann F, Fabri Yard, Döhner Chiliad, van Zandbergen G, Wagner M, Skinner 1000, Modlin RL, Stenger S. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J Immunol. 2012; 189:4069–4078.
12. Napier RJ, Norris BA, Swimm A, Giver CR, Harris WA, Laval J, Napier BA, Patel G, Crump R, Peng Z, et al. Low doses of imatinib induce myelopoiesis and heighten host anti-microbial immunity. PLoS Pathog. 2015; 11:e1004770.
13. Napier RJ, Rafi W, Cheruvu Yard, Powell KR, Zaunbrecher MA, Bornmann Due west, Salgame P, Shinnick TM, Kalman D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets confronting tuberculosis. Jail cell Host Microbe. 2011; 10:475–485.
14. Singhal A, Jie Fifty, Kumar P, Hong GS, Leow MK, Paleja B, Tsenova 50, Kurepina North, Chen J, Zolezzi F, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014; 6:263ra159.
fifteen. Verreck FA, Tchilian EZ, Vervenne RA, Sombroek CC, Kondova I, Eissen OA, Sommandas 5, van der Werff NM, Verschoor E, Braskamp G, et al. Variable BCG efficacy in rhesus populations: pulmonary BCG provides protection where standard intra-dermal vaccination fails. Tuberculosis (Edinb). 2017; 104:46–57.
xvi. Brewer TF. Preventing tuberculosis with Bacillus Calmette-Guerin vaccine: a meta-analysis of the literature. Clin Infect Dis. 2000; 31:Suppl 3. S64–S67.
17. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, Rodrigues LC, Smith PG, Lipman M, Whiting PF, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 2014; 58:470–480.
18. Grode Fifty, Ganoza CA, Brohm C, Weiner J third, Eisele B, Kaufmann SH. Condom and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase i open-characterization randomized clinical trial. Vaccine. 2013; 31:1340–1348.
xix. Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B, Grode 50, Kaufmann SH. The recombinant Bacille Calmette-Guerin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol. 2017; 8:1147.
20. Geoffroy C, Gaillard JL, Alouf JE, Berche P. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes . Infect Immun. 1987; 55:1641–1646.
21. Grode L, Seiler P, Baumann S, Hess J, Brinkmann 5, Nasser Eddine A, Isle of man P, Goosmann C, Bandermann S, Smith D, et al. Increased vaccine efficacy confronting tuberculosis of recombinant Mycobacterium bovis Bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest. 2005; 115:2472–2479.
22. Decatur AL, Portnoy DA. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science. 2000; 290:992–995.
23. Moliva JI, Turner J, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG neglect to protect confronting tuberculosis? Vaccine. 2015; 33:5035–5041.
24. Fletcher HA, Schrager L. TB vaccine development and the finish TB strategy: importance and current status. Trans R Soc Trop Med Hyg. 2016; 110:212–218.
25. Loxton AG, Knaul JK, Grode L, Gutschmidt A, Meller C, Eisele B, Johnstone H, van der Spuy G, Maertzdorf J, Kaufmann SH, et al. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin Vaccine Immunol. 2017; 24:e00439–e16.
26. Fletcher HA. Sleeping dazzler and the story of the Bacille Calmette-Guerin vaccine. MBio. 2016; 7:e01370–e16.
27. Kaufmann SH, Lange C, Rao M, Balaji KN, Lotze Thousand, Schito M, Zumla AI, Maeurer M. Progress in tuberculosis vaccine evolution and host-directed therapies--a country of the art review. Lancet Respir Med. 2014; 2:301–320.
28. Lee JS, Krause R, Schreiber J, Mollenkopf HJ, Kowall J, Stein R, Jeon By, Kwak JY, Song MK, Patron JP, et al. Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host Microbe. 2008; 3:97–103.
29. Whole Mycobacteria Jail cell Vaccines for Tuberculosis Summary Grouping. Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Constitute for Infection Biology, Berlin, Deutschland, July 9, 2014. Vaccine. 2015; 33:3047–3055.
thirty. Arbues A, Aguilo JI, Gonzalo-Asensio J, Marinova D, Uranga Southward, Puentes Due east, Fernandez C, Parra A, Cardona PJ, Vilaplana C, et al. Construction, characterization and preclinical evaluation of MTBVAC, the first alive-adulterate M. tuberculosis-based vaccine to enter clinical trials. Vaccine. 2013; 31:4867–4873.
31. Mearns H, Geldenhuys Hard disk drive, Kagina BM, Musvosvi Grand, Little F, Ratangee F, Mahomed H, Hanekom WA, Hoff ST, Ruhwald M, et al. H1:IC31 vaccination is safe and induces long-lived TNF-alpha+IL-2+CD4 T prison cell responses in M. tuberculosis infected and uninfected adolescents: a randomized trial. Vaccine. 2017; 35:132–141.
32. Reither K, Katsoulis L, Beattie T, Gardiner N, Lenz N, Said K, Mfinanga E, Pohl C, Fielding KL, Jeffery H, et al. Safe and immunogenicity of H1/IC31(R), an adjuvanted TB subunit vaccine, in HIV-infected adults with CD4+ lymphocyte counts greater than 350 cells/mm3: a phase Two, multi-center, double-bullheaded, randomized, placebo-controlled trial. PLoS 1. 2014; 9:e114602.
33. van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O'Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-prison cell responses in human. Vaccine. 2014; 32:7098–7107.
34. Luabeya AK, Kagina BM, Tameris Medico, Geldenhuys H, Hoff ST, Shi Z, Kromann I, Hatherill M, Mahomed H, Hanekom WA, et al. First-in-human trial of the mail service-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine. 2015; 33:4130–4140.
35. Billeskov R, Elvang TT, Andersen PL, Dietrich J. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity. PLoS 1. 2012; vii:e39909.
36. Skeiky YA, Dietrich J, Lasco TM, Stagliano One thousand, Dheenadhayalan V, Goetz MA, Cantarero L, Basaraba RJ, Bang P, Kromann I, et al. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen. Vaccine. 2010; 28:1084–1093.
37. Cha SB, Kim WS, Kim JS, Kim H, Kwon KW, Han SJ, Cho SN, Coler RN, Reed SG, Shin SJ. Pulmonary amnesty and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K. Vaccine. 2016; 34:2179–2187.
38. Coler RN, Bertholet S, Pino SO, Orr MT, Reese V, Windish HP, Davis C, Kahn M, Baldwin SL, Reed SG. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J Infect Dis. 2013; 207:1242–1252.
39. Dockrell HM. Towards new TB vaccines: what are the challenges? Pathog Dis. 2016; 74:ftw016.
40. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled stage 2b trial. Lancet. 2013; 381:1021–1028.
41. van Zyl-Smit RN, Esmail A, Bateman ME, Dawson R, Goldin J, van Rikxoort E, Douoguih M, Pau MG, Sadoff JC, McClain JB, et al. Safety and immunogenicity of adenovirus 35 tuberculosis vaccine candidate in adults with active or previous tuberculosis. A randomized trial. Am J Respir Crit Care Med. 2017; 195:1171–1180.
42. Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One. 2009; 4:e5856.
43. Smaill F, Jeyanathan G, Smieja M, Medina MF, Thanthrige-Don N, Zganiacz A, Yin C, Heriazon A, Damjanovic D, Puri L, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T jail cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med. 2013; 5:205ra134.
44. Méndez-Samperio P. Global efforts in the development of vaccines for tuberculosis: requirements for improved vaccines confronting Mycobacterium tuberculosis . Scand J Immunol. 2016; 84:204–210.
45. von Reyn CF, Mtei 50, Arbeit RD, Waddell R, Cole B, Mackenzie T, Matee M, Bakari 1000, Tvaroha S, Adams LV, et al. Prevention of tuberculosis in Bacille Calmette-Guerin-primed, HIV-infected adults additional with an inactivated whole-prison cell mycobacterial vaccine. AIDS. 2010; 24:675–685.
46. Butov DA, Pashkov YN, Stepanenko AL, Choporova AI, Butova TS, Batdelger D, Jirathitikal V, Bourinbaiar Every bit, Zaitzeva SI. Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB. J Immune Based Ther Vaccines. 2011; 9:three.
47. Gupta A, Ahmad FJ, Ahmad F, Gupta UD, Natarajan M, Katoch VM, Bhaskar S. Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung allowed responses in guinea pig model. Vaccine. 2012; 30:6198–6209.
48. He L, Su J, Ming G, Bernardo L, Chen T, Gisonni-Lex L, Gajewska B. Flow cytometry: an efficient method for antigenicity measurement and particle characterization on an adjuvanted vaccine candidate H4-IC31 for tuberculosis. J Immunol Methods. 2018; 452:39–45.
49. Neeland MR, Shi W, Collignon C, Taubenheim Northward, Meeusen EN, Didierlaurent AM, de Veer MJ. The lymphatic immune response induced by the adjuvant AS01: a comparing of intramuscular and subcutaneous immunization routes. J Immunol. 2016; 197:2704–2714.
fifty. Detienne S, Welsby I, Collignon C, Wouters S, Coccia M, Delhaye S, Van Maele L, Thomas S, Swertvaegher M, Detavernier A, et al. Key role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci Rep. 2016; six:39475.
51. Gillard P, Yang PC, Danilovits M, Su WJ, Cheng SL, Pehme L, Bollaerts A, Jongert E, Moris P, Ofori-Anyinam O, et al. Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: a phase 2 randomised study. Tuberculosis (Edinb). 2016; 100:118–127.
52. Rose F, Wern JE, Ingvarsson PT, van de Weert M, Andersen P, Follmann F, Foged C. Technology of a novel adjuvant based on lipid-polymer hybrid nanoparticles: a quality-by-design arroyo. J Command Release. 2015; 210:48–57.
53. Velmurugan K, Chen B, Miller JL, Azogue S, Gurses Southward, Hsu T, Glickman Thou, Jacobs WR Jr, Porcelli SA, Briken V. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 2007; iii:e110.
54. Gengenbacher One thousand, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer Southward, Lazar D, Wagner I, Mollenkopf HJ, Kaufmann SH. Deletion of nuoG from the vaccine candidate Mycobacterium bovis BCG deltaurec:hly improves protection against tuberculosis. MBio. 2016; seven:e00679–e16.
55. Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CR, Mearns H, Geldenhuys H, Smit E, Abrahams D, Rozot V, Dintwe O, et al. Antigen availability shapes T cell differentiation and role during tuberculosis. Jail cell Host Microbe. 2017; 21:695–706.e5.
56. Brandt Fifty, Elhay M, Rosenkrands I, Lindblad EB, Andersen P. ESAT-six subunit vaccination against Mycobacterium tuberculosis . Infect Immun. 2000; 68:791–795.
57. Esparza-González SC, Troy A, Troudt J, Loera-Arias MJ, Villatoro-Hernández J, Torres-López East, Ancer-Rodríguez J, Gutiérrez-Puente Y, Muñoz-Maldonado Thousand, Saucedo-Cárdenas O, et al. Recombinant adenovirus delivery of calreticulin-ESAT-6 produces an antigen-specific allowed response but no protection confronting a Mycobacterium tuberculosis challenge. Scand J Immunol. 2012; 75:259–265.
58. Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol. 2000; 18:927–974.
59. Feng G, Jiang Q, Xia M, Lu Y, Qiu West, Zhao D, Lu L, Peng G, Wang Y. Enhanced immune response and protective effects of nano-chitosan-based Deoxyribonucleic acid vaccine encoding T cell epitopes of Esat-6 and FL confronting Mycobacterium tuberculosis infection. PLoS One. 2013; 8:e61135.
60. Liang Y, Bai X, Zhang J, Song J, Yang Y, Yu Q, Li North, Wu X. Ag85A/ESAT-half dozen chimeric DNA vaccine induces an agin response in tuberculosis-infected mice. Mol Med Rep. 2016; xiv:1146–1152.
61. Seo H, Jeon I, Kim BS, Park G, Bae EA, Vocal B, Koh CH, Shin KS, Kim IK, Choi K, et al. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC form I-deficient tumours. Nat Commun. 2017; 8:15776.
62. Chung Y, Kim BS, Kim YJ, Ko HJ, Ko SY, Kim DH, Kang CY. CD1d-restricted T cells license B cells to generate long-lasting cytotoxic antitumor immunity in vivo . Cancer Res. 2006; 66:6843–6850.
63. Kim YJ, Ko HJ, Kim YS, Kim DH, Kang South, Kim JM, Chung Y, Kang CY. alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor amnesty. Int J Cancer. 2008; 122:2774–2783.
64. Hong C, Lee H, Oh M, Kang CY, Hong Southward, Park SH. CD4+ T cells in the absenteeism of the CD8+ cytotoxic T cells are critical and sufficient for NKT cell-dependent tumor rejection. J Immunol. 2006; 177:6747–6757.
65. Chung Y, Qin H, Kang CY, Kim South, Kwak LW, Dong C. An NKT-mediated autologous vaccine generates CD4 T-cell dependent strong antilymphoma immunity. Claret. 2007; 110:2013–2019.
66. Hong C, Lee H, Park YK, Shin J, Jung S, Kim H, Hong S, Park SH. Regulation of secondary antigen-specific CD8(+) T-cell responses by natural killer T cells. Cancer Res. 2009; 69:4301–4308.
67. de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honore North, Marchal One thousand, Jiskoot West, England P, et al. ESAT-half dozen from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol. 2007; 189:6028–6034.
68. Seghatoleslam A, Hemmati K, Ebadat S, Movahedi B, Mostafavi-Pour Z. Macrophage allowed response suppression by recombinant Mycobacterium tuberculosis antigens, the ESAT-6, CFP-ten, and ESAT-6/CFP-ten fusion proteins. Iran J Med Sci. 2016; 41:296–304.
69. Francis RJ, Butler RE, Stewart GR. Mycobacterium tuberculosis ESAT-six is a leukocidin causing Ca2+ influx, necrosis and neutrophil extracellular trap formation. Cell Death Dis. 2014; 5:e1474.
seventy. Welin A, Eklund D, Stendahl O, Lerm M. Human being macrophages infected with a loftier burden of ESAT-6-expressing Thou. tuberculosis undergo caspase-one- and cathepsin B-independent necrosis. PLoS Ane. 2011; half dozen:e20302.
71. Romagnoli A, Etna MP, Giacomini E, Pardini 1000, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa 5, Simeone R, et al. ESX-one dependent damage of autophagic flux past Mycobacterium tuberculosis in human dendritic cells. Autophagy. 2012; viii:1357–1370.
72. Dong H, Jing W, Runpeng Z, Xuewei X, Min M, Ru C, Yingru X, Shengfa N, Rongbo Z. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR. Biochem Biophys Res Commun. 2016; 477:195–201.
73. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, et al. The primary mechanism of attenuation of Bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA. 2003; 100:12420–12425.
74. Smith J, Manoranjan J, Pan M, Bohsali A, Xu J, Liu J, McDonald KL, Szyk A, LaRonde-LeBlanc N, Gao LY. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its function in Mycobacterium marinum escape from the vacuole. Infect Immun. 2008; 76:5478–5487.
75. Peng X, Sun J. Mechanism of ESAT-vi membrane interaction and its roles in pathogenesis of Mycobacterium tuberculosis . Toxicon. 2016; 116:29–34.
76. Sreejit One thousand, Ahmed A, Parveen North, Jha Five, Valluri VL, Ghosh Due south, Mukhopadhyay S. The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-two-microglobulin (beta2M) affecting antigen presentation function of macrophage. PLoS Pathog. 2014; 10:e1004446.
77. Sengupta S, Naz South, Das I, Ahad A, Padhi A, Naik SK, Ganguli G, Pattanaik KP, Raghav SK, Nandicoori VK, et al. Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-2 transactivator loci in macrophages. J Biol Chem. 2017; 292:6855–6868.
78. Watson RO, Bong SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS. The cytosolic sensor cGAS detects Mycobacterium tuberculosis Dna to induce blazon I interferons and activate autophagy. Prison cell Host Microbe. 2015; 17:811–819.
79. Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis Deoxyribonucleic acid targets bacteria for autophagy past activating the host Deoxyribonucleic acid-sensing pathway. Cell. 2012; 150:803–815.
80. Collins AC, Cai H, Li T, Franco LH, Li XD, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, et al. Cyclic GMP-AMP synthase is an innate immune Dna sensor for Mycobacterium tuberculosis. Cell Host Microbe. 2015; 17:820–828.
81. Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y, Rybniker J, Schmid-Burgk JL, Schmidt T, Hornung 5, Cole ST, et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-one. Prison cell Host Microbe. 2015; 17:799–810.
82. Köster South, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G, Hassan A, Grigsby SJ, Mittal E, Park HS, Jones V, et al. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis past the LCP protein CpsA. Proc Natl Acad Sci USA. 2017; 114:E8711–E8720.
83. McElvania Tekippe East, Allen IC, Hulseberg PD, Sullivan JT, McCann JR, Sandor Yard, Braunstein G, Ting JP. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS I. 2010; 5:e12320.
84. Saiga H, Kitada S, Shimada Y, Kamiyama Due north, Okuyama M, Makino M, Yamamoto M, Takeda K. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol. 2012; 24:637–644.
85. Ruhwald Thou, de Thurah Fifty, Kuchaka D, Zaher MR, Salman AM, Abdel-Ghaffar AR, Shoukry FA, Michelsen SW, Soborg B, Blauenfeldt T, et al. Introducing the ESAT-6 gratuitous IGRA, a companion diagnostic for TB vaccines based on ESAT-six. Sci Rep. 2017; vii:45969.
Source: https://synapse.koreamed.org/articles/1108143
Post a Comment for "Progress in Tuberculosis Vaccine Development and Hostdirected Therapiesã¢ââ€a State of the Art Review"